The course is given in three modules. In addition to lectures by the organizers there will be invited guest speakers from industry.
Module 1 – Introduction to Data Science: Introduction to fault-tolerant distributed file systems and computing.
The whole data science process illustrated with industrial case-studies. Practical introduction to scalable data processing to ingest, extract, load, transform, and explore (un)structured datasets. Scalable machine learning pipelines to model, train/fit, validate, select, tune, test and predict or estimate in an unsupervised and a supervised setting using nonparametric and partitioning methods such as random forests. Introduction to distributed vertex-programming.
Module 2 – Distributed Deep Learning: Introduction to the theory and implementation of distributed deep learning.
Classification and regression using generalised linear models, including different learning, regularization, and hyperparameters tuning techniques. The feedforward deep network as a fundamental network, and the advanced techniques to overcome its main challenges, such as overfitting, vanishing/exploding gradient, and training speed. Various deep neural networks for various kinds of data. For example, the CNN for scaling up neural networks to process large images, RNN to scale up deep neural models to long temporal sequences, and autoencoder and GANs.
Module 3 – Decision-making with Scalable Algorithms
Theoretical foundations of distributed systems and analysis of their scalable algorithms for sorting, joining, streaming, sketching, optimising and computing in numerical linear algebra with applications in scalable machine learning pipelines for typical decision problems (eg. prediction, A/B testing, anomaly detection) with various types of data (eg. time-indexed, space-time-indexed and network-indexed). Privacy-aware decisions with sanitized (cleaned, imputed, anonymised) datasets and datastreams. Practical applications of these algorithms on real-world examples (eg. mobility, social media, machine sensors and logs). Illustration via industrial use-cases. The first course module, we aim to ensure that all students understand the basic concepts and tools in deep learning.