lunduniversity.lu.se

Forskar­utbildnings­kurser

Faculty of Engineering | Lund University

Detaljer för kurs EDAN95F Applied Machine Learning

Utskriftsvänlig visning

Allmänt
  • EDAN95F
  • Aktiv
Kursnamn
  • Applied Machine Learning
Kursomfattning
  • 7.5
Undervisningsform
  • Gemensam kurs, avancerad nivå och forskarnivå
Administrativ information
  • 7121 (Computer Science (LTH))
  •  -10-15
  • Professor Thomas Johansson

Aktuell fastställd kursplan

Allmänt
  • English
  • Varje hösttermin
Syfte
  • To give an introduction to several subdomains of machine learning and to give an orientation about fundamental methods and algorithms within these domains. To convey knowledge about breadth and depth of the domain.
Innehåll
  • * unsupervised and supervised learning, classification and regression
    * neural networks, including convolutional neural networks, recurrent neural networks and deep learning
    * bayesian learning
    * reinforcement learning
    * support vector machines, decision trees, random forests, ensemble methods
    * hardware and software architectures for machine learning, parallelisation, use of GPUs
Kunskap och förståelse
  • För godkänd kurs skall doktoranden
  • in an examination (oral or written) display basic knowledge concerning theories and methods related to the following subdomains:
    unsupervised and supervised learning, classification and regression
    neural networks, including convolutional neural networks, recurrent neural networks and deep learning
    bayesian learning
    reinforcement learning
    support vector machines, decision trees, random forests, ensemble methods
Färdighet och förmåga
  • För godkänd kurs skall doktoranden
  • complete a number of assignments based on problems related to some of the previously mentioned subdomains and demonstrating the ability to:
    evaluate and prepare the data
    select and train a model
    evaluate the outcome and fine-tune the model
Värderingsförmåga och förhållningssätt
  • För godkänd kurs skall doktoranden
  • * be able to judge suitability of a given machine learning method to a given problem,
    * understand limitations of applicability of machine learning methods
Undervisningsformer
  • Föreläsningar
  • Laborationer
Examinationsformer
  • Skriftlig tentamen
  • The written examination can be replaced by an oral exam given mutual agreement
  • Underkänd, godkänd
Förkunskapskrav
Förutsatta förkunskaper
  • EDAA01 Programming - Second Course or similar
Urvalskriterier
Litteratur
  • Murphy, Kevin P.: Machine Learning, A Probabilistic Perspective.. ISBN 9780262018029.
    Goodfellow, I., Bengio, Y. & Courville, A.: Deep Learning. MIT Press, 2016. ISBN 9780262035613.
    Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems. ISBN 9781491962299.
Övrig information
Kurskod
  • EDAN95F
Administrativ information
  •  -10-15
  • Professor Thomas Johansson

Alla fastställda kursplaner

1 kursplan.

Gäller från och med Första inlämning Andra inlämning Fastställd
Autumn 2018 2018‑10‑12 16:27:33 2018‑10‑15 08:28:40 2018‑10‑15

Aktuellt eller kommande publicerat kurstillfälle

Kursplan
  • Autumn 2018
Kurstillfälle
  • 2025-11-03
  • 2026-01-31
  • Lund
  • Full time
Kursansvarig
Examinator
  • Associate senior lecturer Maj Stenmark
Anmälningsinformation
  • Contact the 1st course responsible teacher (Maj Stenmark, via e-mail) AT THE LATEST on September 30 to make sure to take part in the selection process according to the following priorities: 1. PhD students with the CS department, 2. other LTH departments, 3. other LU departments, 4. external, 5. other participants (non-PhD student). The number of places on PhD education level is determined based on the number of students from undergraduate (MSc) level. The supervisor needs to agree for the PhD student to join the course.
Övrigt
  • Procedures for handin-assignments and exercises for PhD students can be differing from those for undergraduate students and are subject to agreement with the course responsible teacher
Administrativ information
  • 2025-06-11
  • Maj Stenmark

Alla publicerade kurstillfällen

7 kurstillfällen.

Kurskod ▽ Kursnamn ▽ Avdelning ▽ Inrättad ▽ Kursplan giltig från ▼ Startdatum ▽ Slutdatum ▽ Publicerad ▽
EDAN95F Applied Machine Learning Computer Science (LTH) 2019‑09‑26 Autumn 2018 2019‑11‑04 2019‑12‑31 2019‑09‑26
EDAN95F Applied Machine Learning Computer Science (LTH) 2020‑09‑29 Autumn 2018 2020‑11‑02 2020‑12‑31 2020‑09‑29
EDAN95F Applied Machine Learning Computer Science (LTH) 2021‑08‑16 Autumn 2018 2021‑11‑01 2021‑12‑31 2021‑08‑16
EDAN95F Applied Machine Learning Computer Science (LTH) 2022‑06‑08 Autumn 2018 2022‑10‑31 2023‑01‑31 2022‑06‑08
EDAN95F Applied Machine Learning Computer Science (LTH) 2023‑06‑15 Autumn 2018 2023‑10‑30 2024‑01‑31 2023‑06‑15
EDAN95F Applied Machine Learning Computer Science (LTH) 2024‑05‑30 Autumn 2018 2024‑11‑04 2025‑01‑31 2024‑05‑30
EDAN95F Applied Machine Learning Computer Science (LTH) 2025‑06‑11 Autumn 2018 2025‑11‑03 2026‑01‑31 2025‑06‑11

Utskriftsvänlig visning