Kursplan för

Computational Electromagnetics
Elektromagnetiska beräkningar

ETI260F, 6 högskolepoäng

Gäller från och med: Autumn 2019
Beslutad av: Professor Thomas Johansson
Datum för fastställande: 2019-10-11

Allmänna uppgifter

Avdelning: Electrical and Information Technology
Kurstyp: Ren forskarutbildningskurs
Undervisningsspråk: English

Syfte

This course covers a few major computational methods for numerical analysis of electromagnetic fields for engineering applications. It includes the finite difference method (and the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. A central part of this course is to give detailed knowledge of computational electromagnetics which is used as an analysis and simulation tool for dealing with electromagnetic problems. Once the students are familiar with these three methods, their understanding of electromagnetic numerical problems in engineering simulation or scientific research will be more profound. The aim of this course is to give good knowledge concerning principles, concepts, applications, performance and limitations of fundamental computational electromagnetics.

Mål

Kunskap och förståelse

För godkänd kurs skall doktoranden

Färdighet och förmåga

För godkänd kurs skall doktoranden

Värderingsförmåga och förhållningssätt

För godkänd kurs skall doktoranden be able to understand the principles, advantages, limitations, and application scenarios of different computational electromagnetic methods and make the appropriate selection and comparative analysis in the study of practical problems.

Kursinnehåll

The courses focus on the three fundamental computational electromagnetics methods: The finite difference time domain method - The basic principle of finite difference time-domain method is introduced by first deriving basic finite differencing formulas. This is followed by the stability and dispersion analyses. After that, the method is introduced for solving Maxwell’s equations in both two and three dimensions. Finally, we introduce how to truncate the computational domain for the analysis of open-region electromagnetic problems using absorbing boundary conditions and perfectly matched layers, how to excite incident waves in a computational domain, and how to calculate far fields based on the near-field information. The finite element method - The basic principle of the finite element method is introduced by considering a simple one-dimensional example. We then describe in detail the formulation of the finite element analysis of electromagnetic scalar and vector problems in the frequency domain. This is followed by the extension to the time domain, which includes a brief treatment of modeling a dispersive medium. In each case, we present several numerical examples to demonstrate the application and capability of the finite element method. The method of moment - The basic principle of the method of moment using a simple electrostatic problem. We then formulate a general integral equation for the two-dimensional Helmholtz equation and apply it to a variety of specific problems. For each specific problem, we describe its moment-method solution step by step. This is repeated for three-dimensional electromagnetic field problems that include scattering by various conducting and dielectric objects. Finally, we use a relatively simple example to illustrate how to apply the method into practice.

Kurslitteratur

Rylander, T., Ingelstrom, P. & Bondeson, A.: Computational Electromagnetics. ISBN 9781489986023.

Kursens undervisningsformer

Undervisningsformer: Föreläsningar, seminarier, litteraturkurs som självstudier

Kursens examination

Examinationsform: Skriftlig rapport
Betygsskala: Underkänd, godkänd
Examinator:

Antagningsuppgifter

Förutsatta förkunskaper: Electromagnetic theory

Övrig information

Course Coordinator: Shang Xiang, shang.xiang@eit.lth.se

Kurstillfällesinformation

Kontaktinformation och övrigt

Kursansvariga:


Fullständig visning