Kursplan för

Random Walks on Groups
Slumpvandringar på grupper

FMA205F, 7.5 högskolepoäng

Gäller från och med: Spring 2025
Beslutad av: Maria Sandsten
Datum för fastställande: 2024-11-26

Allmänna uppgifter

Avdelning: Mathematics
Kurstyp: Ren forskarutbildningskurs
Undervisningsspråk: English

Syfte

The aim of the course is to enlighten and combine different areas, methods and view points in mathematics. In particular, group theory, geometry, analysis, probabilty theory, ergodic theory and dynamical system theory. The outcome should be that students from different fields of mathematics will see that one and the same area of research has different aspects and view points and that general progress can only be made by combining many of the different methods and ideas. On the other hand the students will learn that these combinations of ideas will also contribute to the development of the single different areas. A second point is that the topic of the course is a central field of research in modern mathematics and some of the most prestigious mathematicians are working on it. A welcome output of the course is to encourage the PhD students to look out of their own special field of research and try to adopt methods and view points from other even far away areas of mathematics. The students should see that mathematics is not divided into different non-overlapping areas but rather a unified combination of all areas.

Mål

Kunskap och förståelse

För godkänd kurs skall doktoranden Understand how combined methods from different fields leads to profound results on random walks.

Färdighet och förmåga

För godkänd kurs skall doktoranden Be familiar with applying methods from group theory, geometry and ergodic theory to analyse random walks.

Värderingsförmåga och förhållningssätt

För godkänd kurs skall doktoranden choose appropriate methods for analysing problems on random walks.

Kursinnehåll

Basic properties of random walks, the ergodic theorems of Birkhoff and Kingman, Markov operators, Dirichlet forms, isoperimetric inequalities, the Liouville property of a random walk, boundary of a random walk, geometry of hyperbolic groups, and Gromov’s classification of groups of polynomial growth.

Kurslitteratur

Lalley, Steven P.: Random walks on infinite groups.. Springer Verlag, 2023.

Kursens undervisningsformer

Undervisningsformer: Seminarier, litteraturkurs som självstudier

Kursens examination

Examinationsformer: Muntlig tentamen, seminarieföredrag av deltagarna
Betygsskala: Underkänd, godkänd
Examinator:

Antagningsuppgifter

Förkunskapskrav: Master studies in mathematics at LTH or NF, or equivalent.
Förutsatta förkunskaper: Basic knowledge in algebra, probability and geometry.

Kurstillfällesinformation

Startdatum: 2025-01-07. Startdatumet är ungefärligt.
Slutdatum: 2025-06-08
Kursfart: Not specified

Kontaktinformation och övrigt

Kursansvarig: Tomas Persson <tomas.persson@math.lth.se>


Fullständig visning