lu.se

Forskar­utbildnings­kurser

Lunds tekniska högskola | Lunds universitet

Detaljer för kursplan för kurs FMA330F giltig från och med HT 2024

Utskriftsvänlig visning

Allmänt
Syfte
  • On completion of the course, participants shall be able to:
    • Define Hardy spaces on the unit disc and describe their basic properties, especially the boundary behaviour of functions in these spaces, the use of non-tangential maximal functions and their relation to the Hardy-Littlewood maximal function.
    • Describe the bounded Carleson-embeddings of these spaces into L^p-spaces corresponding to measures on the unit disc.
    • Describe the inner-outer factorization of functions in Hardy spaces and its applications, for example the Phragmén-Lindelöf principle. Describe the inner-outer factorization of a concrete function.
    • State and prove the M. Riesz theorem about conjugate harmonic functions, as well as Fefferman’s duality theorem in the limit case p=1.
    • Reflect about the strength of these methods in the study of analytic functions on a disc, but also about their limitations concerning functions with fast growth near the boundary.
Innehåll
  • Poisson integrals and their boundary behaviour. Fatou’s theorem via the Hardy- Littlewood maximal function. Carleson measures. Outer functions. Hardy spaces and the inner-outer factorization in these spaces. The M. Riesz theorem, the Fefferman duality theorem, and analytic BMO. The John-Nirenberg inequality.
Kunskap och förståelse
  • För godkänd kurs skall doktoranden
  • Define Hardy spaces on the unit disc and describe their basic properties, especially the boundary behaviour of functions in these spaces, the use of non-tangential maximal functions and their relation to the Hardy-Littlewood maximal function.

    Describe the bounded Carleson-embeddings of these spaces into L^p-spaces corresponding to measures on the unit disc.

    Describe the inner-outer factorization of functions in Hardy spaces and its applications, for example the Phragmén-Lindelöf principle. Describe the inner-outer factorization of a concrete function.
Färdighet och förmåga
  • För godkänd kurs skall doktoranden
  • State and prove the M. Riesz theorem about conjugate harmonic functions, as well as Fefferman’s duality theorem in the limit case p=1.
Värderingsförmåga och förhållningssätt
  • För godkänd kurs skall doktoranden
  • Reflect about the strength of these methods in the study of analytic functions on a disc, but also about their limitations concerning functions with fast growth near the boundary.
Undervisningsformer
  • Föreläsningar
  • Seminarier
Examinationsformer
  • Muntlig tentamen
  • Underkänd, godkänd
Förkunskapskrav
  • Courses in Analytic functions, Integration Theory, and a Specialized course in Integration Theory or corresponding pre-knowledge are obligatory.
Förutsatta förkunskaper
  • A course in Linear Functional Analysis is recommended, but not compulsory.
Urvalskriterier
Litteratur
  • Aleman, A.: Introduction to Hardy spaces.
  • Lecturer's own notes from previous years.
Övrig information
Kurskod
  • FMA330F
Administrativ information
  • 2024-08-27
  • Maria Sandsten

Alla publicerade kurstillfällen för kursplanen

1 kurstillfälle.

Startdatum Slutdatum Publicerad
2024‑09‑02 (ungefärligt) 2025‑01‑19

Utskriftsvänlig visning