lu.se

Forskar­utbildnings­kurser

Lunds tekniska högskola | Lunds universitet

Detaljer för kurs FMAN30F Medicinsk bildanalys

Utskriftsvänlig visning

Allmänt
  • FMAN30F
  • Tillfällig
Kursnamn
  • Medical Image Analysis
Kursomfattning
  • 7.5
Undervisningsform
  • Gemensam kurs, avancerad nivå och forskarnivå
Administrativ information
  • 7151 (Matematikcentrum (inst LTH) / Matematik (LTH))
  •  -12-19
  • FN1/Anders Gustafsson

Aktuell fastställd kursplan

Allmänt
Syfte
  • To prepare the postgraduate student for research on the border between medicin and engineering through a basic introduction to theory and mathematical methods used in medical image analysis.
Innehåll
  • Basic concepts: Images, Volume data, 4D data, pixel, voxel, file-formats, DICOM (Digital Imaging and Communications in Medicine). Registration, segmentation, shape models, machine learning.

    Image acquisition techniques: Radiography, CT (X-ray computed tomography), MR (Magnetic resonance imaging), ultrasound, PET (Positron emission tomography), Scint (Scintigraphy) and SPECT (Single-photon emission computed tomography).

    Noise and Image enhancement, loss-less compression

    Registration: Registration of medical images. Mutual information. Landmark based methods. Deformation models.

    Segmentation: active contours in 2D, 3D and 4D, active appearance models. Graph-methods.

    Machine Learning: Training, testing, generalization, hypothesis spaces.

    Validation: Databases. Ethics.
Kunskap och förståelse
  • För godkänd kurs skall doktoranden
  • be able to explain clearly, and to independently use, basic mathematical concepts in medical image analysis, in particular regarding registration, segmentation and classification.

    be able to describe and give an informal explanation of some of the different image acquisition techniques used in medical imaging, e.g. Radiography, CT (X-ray computed tomography), MR (Magnetic resonance imaging), ultrasound, PET (Positron emission tomography), Scint (Scintigraphy) and SPECT (Single-photon emission computed tomography).

    be able to describe and give an informal explanation of the mathematical theory behind some central medical image processing algorithms

    have an understanding of the statistical principles used in machine learning
Färdighet och förmåga
  • För godkänd kurs skall doktoranden
  • in an engineering manner be able to use computer packages to solve problems in medical image analysis.

    be able to show good capability to independently identify problems which can be solved with methods from medical image analysis, and be able to choose an appropriate method.

    be able to independently apply basic methods in medical image processing to problems which are relevant in medical applications or research.

    with proper terminology, in a well structured way and with clear logic be able to explain the solution to a problem in medical image analysis.

Värderingsförmåga och förhållningssätt
  • För godkänd kurs skall doktoranden
Undervisningsformer
  • Föreläsningar
  • Laborationer
  • övningar
Examinationsformer
  • Inlämningsuppgifter
  • Underkänd, godkänd
Förkunskapskrav
Förutsatta förkunskaper
Urvalskriterier
Litteratur
  • Material tillhandahålles av institutionen..
Övrig information
Kurskod
  • FMAN30F
Administrativ information
  •  -12-19
  • FN1/Anders Gustafsson

Alla fastställda kursplaner

1 kursplan.

Gäller från och med Första inlämning Andra inlämning Fastställd
HT 2014 2014‑12‑02 18:03:29 2014‑12‑03 10:47:39 2014‑12‑19

Aktuellt eller kommande publicerat kurstillfälle

Inget matchande kurstillfälle hittades.

Alla publicerade kurstillfällen

Inga matchande kurstillfällen hittades.

0 kurstillfällen.


Utskriftsvänlig visning