Gäller från och med: Autumn 2013
Beslutad av: FN1/Anders Gustafsson
Datum för fastställande: 2014-09-15
Avdelning: Numerical Analysis
Kurstyp: Ren forskarutbildningskurs
Undervisningsspråk: English
Stochastic differential equations are increasingly important in many cutting-edge models in physics, biochemistry and finance. The aim of the course is to give the postgraduate student a fundamental knowledge and understanding of stochastic differential equations, emphasizing the computational techniques necessary for stochastic simulation in modern applications.
Kunskap och förståelse
För godkänd kurs skall doktoranden
Färdighet och förmåga
För godkänd kurs skall doktoranden be able to independently implement discretization schemes for stochastic differential equations and critically evaluate the results.
The course is divided into two parts, with the first dealing with classical theory for deterministic ordinary differential equations (ODEs) and the second with theory for stochastic differential equations (SDEs). The deterministic part reviews necessary background, in particular Runge-Kutta and Rosenbrock methods. The second part gives an introduction to SDEs, and presents basic ideas and techniques used in statistical simulation, such as root mean square stability; consistency notions; and weak and strong convergence. A few applications will be studied in more detail, including pertinent problems to be solved using a computer.
Averina, Tatjana A.: Numerical analysis of systems of ordinary and stochastic differential equations. V.S.P. International Science, 1997. ISBN 9789067642507.
Undervisningsformer: Föreläsningar, projekt
Examinationsformer: Muntlig tentamen, seminarieföredrag av deltagarna
Betygsskala: Underkänd, godkänd
Examinator:
Förutsatta förkunskaper: FMNN10 Numerical Methods for Differential Equations, Probability Theory.
The course is given if at least five postgraduate students apply. However, there may be some months' delay.
Kursansvariga: