Kursen består av två delar, av vilka den första behandlar klassisk teori för deterministiska ordinära differentialekvationer (ODE), och den andra den teorin för stokastiska differentialekvationer (SDE). Den deterministiska delen repeterar material som behövs för fortsättningen, särskilt Runge-Kutta och Rosenbrockmetoder. Den andra delen ger en introduktion till SDE, och presenterar grundläggande begrepp och tekniker som används vid statistisk simulering, såsom stabilitet med avseende på kvadratiskt medel, konsistens, samt svag och stark konvergens. Några tillämpningar kommer att studeras i detalj, med tillhörande uppgifter som löses på dator.