Detaljer för kursplan för kurs FMSF90F giltig från och med VT 2025 Utskriftsvänlig visning Kurskod:FMSF90F Gäller från och med:Vårterminen 2025 Kursplanen är fastställd Allmänt Undervisningsspråk:Engelska Ges:Varje vårtermin Kurshemsida:https://www.maths.lu.se/utbildning/civilingenjoersutbildning/matematisk-statistik-paa-civilingenjoersprogram Syfte The course begins with an overview of basic data wrangling and visualisation. With a focus on the student's ability to identify and illustrate important features of the data. Then important methods in statistical learning are introduced. Emphasis is given supervised and unsupervised learning. Issues arising from fitting and evaluating multiple models as well as the methods relationship to linear regression are discussed. Computer based labs and projects form an important part of the learning activities.The course concludes with a project where the students will select suitable methods to analyze a given data material. Innehåll * Basic methods for data handling and common visualisation methods for data * Methods for unsupervised and supervised learning such as: clustering; hierarchical clustering; and regression and decision tree methods for classification and regression problems. * Methods for model selection and validation such as: bootstrap, split of data into training and test, and cross-validation. Kunskap och förståelse För godkänd kurs skall doktoranden Describe different ways of aggregating, summarising and visualising data. Explain the principles of supervised and unsupervised learning. Explain the importance of evaluating models based on their predictive ability. Färdighet och förmåga För godkänd kurs skall doktoranden be able to wrangle, present and visualise data to highlight important features in a complex data material. be able to use common methods for supervised and unsupervised learning. be able to draw conclusions regarding a data material, based on results from classification and regression methods. be able to use common method for evaluation of predictive ability on out-of-sample data. present the analysis and conclusions of a practical problem in a written report. Värderingsförmåga och förhållningssätt För godkänd kurs skall doktoranden Reflect over the limitations of the chosen model and method, as well as alternative solutions. Reflect over the possible issues with fitting multiple models to the same data material. Undervisningsformer Föreläsningar Laborationer Projekt Examinationsformer Muntlig tentamen Skriftlig rapport Kommentarer:Passing grade on all written lab reports, passing grade on the final project report and oral presentation of the final project. Betygsskala:Underkänd, godkänd Förkunskapskrav Basic statistics Förutsatta förkunskaper Basic statistics, some programming experience. Urvalskriterier Litteratur Litteratur:James, G., Witten, D., Hastie, T. & Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer, 2021. ISBN 9781071614174. Övrig information Studied together with FMSF90. Kurskod Kurskod:FMSF90F Administrativ information Datum för fastställande:2024-11-26 Beslutad av:Maria Sandsten Alla publicerade kurstillfällen för kursplanen Inga matchande kurstillfällen hittades. 0 kurstillfällen. Utskriftsvänlig visning