lunduniversity.lu.se

Forskar­utbildnings­kurser

Faculty of Engineering | Lund University

Detaljer för kursplan för kurs FRT170F giltig från och med Autumn 2016

Utskriftsvänlig visning

Allmänt
Syfte
  • The study circle introduces doctoral students to recent advances in deep learning. Focus is on using deep learning in practice.
Innehåll
  • The content is based on the doctoral students' choice and active participations. Possible subtopics include Autoencoders, Convolutionan Networks, Structured Probabilistic Models, Restricted Boltzmann Machines, Recurrent and Recursive Nets, Deep Reinforcement Learning, Tensorflow, Deep Learning using GPUs, Stacked Denoising Autoencoders, DL for Natural Language Processing, Deconvolutionan networks, Optimization of Deep Networks.
Kunskap och förståelse
  • För godkänd kurs skall doktoranden
  • understand how deep networks can be constructed and trained.
    know typical components of a deep network such as RBMs, autoencoders, RNNs.
    understand how typical network and training parameters influence the performance of the networks and their training speed.

Färdighet och förmåga
  • För godkänd kurs skall doktoranden
  • be able to construct and train a deep neural network using an existing software platform, such as Tensorflow, Theano or similar.
    be able to understand how to map a practical problem to a deep network architecture.
    read and understand research articles in the field of deep learning.
    be able to choose efficient network training methods.
Värderingsförmåga och förhållningssätt
  • För godkänd kurs skall doktoranden
Undervisningsformer
  • Föreläsningar
  • Laborationer
Examinationsformer
  • Inlämningsuppgifter
  • Seminarieföredrag av deltagarna
  • For a passing grade the doctoral student should give a lecture on a deep learning topic and construct a suitable hand-in assignment for the other course participants. The student should also solve at least half of the exercises presented in the course and upload solutions and code to a common code repository.
  • Underkänd, godkänd
Förkunskapskrav
Förutsatta förkunskaper
  • The participants are assumed to have taken a course in basic machine learning or have corresponding knowledge.
Urvalskriterier
Litteratur
  • Goodfellow, B. & Courville: Deep Learning (manuscript).
  • Book manuscript: https://github.com/HFTrader/DeepLearningBook/blob/master/DeepLearningBook.pdf
Övrig information
Kurskod
  • FRT170F
Administrativ information
  •  -06-01
  • Professor Thomas Johansson

Alla publicerade kurstillfällen för kursplanen

Inga matchande kurstillfällen hittades.

0 kurstillfällen.


Utskriftsvänlig visning