Gäller från och med: Autumn 2016
Beslutad av: Professor Thomas Johansson
Datum för fastställande: 2017-06-01
Avdelning: Automatic Control
Kurstyp: Ren forskarutbildningskurs
Undervisningsspråk: English
The study circle introduces doctoral students to recent advances in deep learning. Focus is on using deep learning in practice.
Kunskap och förståelse
För godkänd kurs skall doktoranden
Färdighet och förmåga
För godkänd kurs skall doktoranden
The content is based on the doctoral students' choice and active participations. Possible subtopics include Autoencoders, Convolutionan Networks, Structured Probabilistic Models, Restricted Boltzmann Machines, Recurrent and Recursive Nets, Deep Reinforcement Learning, Tensorflow, Deep Learning using GPUs, Stacked Denoising Autoencoders, DL for Natural Language Processing, Deconvolutionan networks, Optimization of Deep Networks.
Goodfellow, B. & Courville: Deep Learning (manuscript).
Book manuscript: https://github.com/HFTrader/DeepLearningBook/blob/master/DeepLearningBook.pdf
Undervisningsformer: Föreläsningar, laborationer
Examinationsformer: Inlämningsuppgifter, seminarieföredrag av deltagarna.
For a passing grade the doctoral student should give a lecture on a deep learning topic and construct a suitable hand-in assignment for the other course participants. The student should also solve at least half of the exercises presented in the course and upload solutions and code to a common code repository.
Betygsskala: Underkänd, godkänd
Examinator:
Förutsatta förkunskaper: The participants are assumed to have taken a course in basic machine learning or have corresponding knowledge.
Kursansvariga:
Hemsida: http://www.control.lth.se/Education/DoctorateProgram/deep-learning-study-circle.html