lu.se

Forskar­utbildnings­kurser

Lunds tekniska högskola | Lunds universitet

Detaljer för kurs FMA171F Bildanalys

Utskriftsvänlig visning

Allmänt
  • FMA171F
  • Tillfällig
Kursnamn
  • Image Analysis
Kursomfattning
  • 7,5
Undervisningsform
  • Gemensam kurs, avancerad nivå och forskarnivå
Administrativ information
  • 7151 (Matematikcentrum (inst LTH) / Matematik (LTH))
  •  -01-31
  • FN1/Anders Gustafsson

Aktuell fastställd kursplan

Allmänt
  • Engelska
  • Varje hösttermin
Syfte
  • The aim of the course is to give necessary knowledge of digital image analysis for further research within the area and to be able to use digital image analysis within other research areas such as computer graphics, image coding, video coding and industrial image processing problems. The aim is also to prepare the student for further studies in e.g. computer vision, multispectral image analysis and statistical image analysis.
Innehåll
  • Basic mathematical concepts: Image transforms, DFT (Discrete Fourier Transform), FFT (Fast Fourier Transform).
    Image enhancement: Grey level transforms, filtering.
    Image restoration: Filterings, inverse methods.
    Scale space theory: Continuous versus discrete theory, interpolation.
    Extraction of special features: Filtering, edge and corner detection.
    Segmentation: graph-methods, active contours, mathematical morphology.
    Bayesian image handling: MAP(Maximum Aposteriori) estimations, simulation.
    Pattern recognition: Classification, SVM (Support Vector Machines), PCA (Principal Component Analysis), learning.
    Registration.
    Machine Learning: Training, testing, generalization, hypothesis spaces.

Kunskap och förståelse
  • För godkänd kurs skall doktoranden
  • be able to explain clearly, and to independently use, basic mathematical concepts in image analysis, in particular regarding transform theory (in space as well as in the frequency domain), image enhancement methods, image compression and pattern recognition.

    be able to describe and give an informal explanation of the mathematical theory behind some central image processing algorithms (both deterministic and stochastic).

    have an understanding of the statistical principles used in machine learning
Färdighet och förmåga
  • För godkänd kurs skall doktoranden
  • in an engineering manner be able to use computer packages to solve problems in image analysis.

    be able to show good capability to independently identify problems which can be solved with methods from image analysis, and be able to choose an appropriate method.

    be able to independently apply basic methods in image processing to problems which are relevant in industrial applications or research.

    with proper terminology, in a well structured way and with clear logic be able to explain the solution to a problem in image analysis.
Värderingsförmåga och förhållningssätt
  • För godkänd kurs skall doktoranden
Undervisningsformer
  • Föreläsningar
  • Laborationer
  • övningar
Examinationsformer
  • Inlämningsuppgifter
  • Underkänd, godkänd
Förkunskapskrav
Förutsatta förkunskaper
Urvalskriterier
Litteratur
  • Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, 2010. ISBN 9781848829343.
  • It is possible to pass the course without owning the book, using material available through the course home page.
Övrig information
Kurskod
  • FMA171F
Administrativ information
  •  -01-31
  • FN1/Anders Gustafsson

Alla fastställda kursplaner

1 kursplan.

Gäller från och med Första inlämning Andra inlämning Fastställd
HT 2013 2013‑10‑11 16:19:33 2014‑01‑27 14:12:49 2014‑01‑31

Aktuellt eller kommande publicerat kurstillfälle

Inget matchande kurstillfälle hittades.

Alla publicerade kurstillfällen

1 kurstillfälle.

Kursplan giltig från Startdatum Slutdatum Publicerad
Höstterminen 2013 2015‑09‑01 2015‑11‑01

Utskriftsvänlig visning