Gäller från och med: Spring 2014
Beslutad av: FN1/Anders Gustafsson
Datum för fastställande: 2014-04-22
Avdelning: Numerical Analysis
Kurstyp: Ren forskarutbildningskurs
Undervisningsspråk: English
Isogeometric analysis carries over Computer Aided Design (CAD) geometry into the Finite Element Method (FEM), by replacing the classical basis functions of FEM with B-splines and NURBS (Non-Uniform Rational B-Splines). The reason behind this recently developed technique is to enhance accuracy by allowing FEM simulations directly on CAD models. Applications are especially important in areas where higher-order smoothness is required, such as shell theory, cohesive-zone models in failure mechanics, and free-boundary problems. The course is relevant for PhD-students within numerical analysis that would like to pursue research within the FEM or would like to broaden their competence and to students in other areas who would like to use the FEM in their research.
Kunskap och förståelse
För godkänd kurs skall doktoranden
Färdighet och förmåga
För godkänd kurs skall doktoranden
Värderingsförmåga och förhållningssätt
För godkänd kurs skall doktoranden be able to decide on the fundamental properties of a NURBS mesh (degree, knots, continuity) in order to accurately model the geometry.
B-splines. Non-Uniform Rational B-splines. Basis functions, properties and construction. Knot refinement. Multiple patches. NURBS meshes. Boundary value problems. Galerkin methods. Boundary conditions. The finite element method. Comparison of finite elements and isogeometric analysis. The equations of elastostatics. Modelling of shells.
Cottrell, J.A., Hughes, T.J.R. & Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CADF and FEA. Wiley, 2009. ISBN 9780470748732.
Undervisningsformer: Föreläsningar, övningar, projekt, övrigt. Presentations by the participants.
Examinationsformer: Muntlig tentamen, skriftlig rapport
Betygsskala: Underkänd, godkänd
Examinator:
Förkunskapskrav: Basic knowledge of linear algebra, calculus of one and several variables, and differential equations.
Förutsatta förkunskaper: Basic knowledge of the finite element method is recommended.
Kursansvariga:
Hemsida: http://ctr.maths.lu.se/na/courses/FMNN182/