Isogeometric analysis carries over Computer Aided Design (CAD) geometry into the Finite Element Method (FEM), by replacing the classical basis functions of FEM with B-splines and NURBS (Non-Uniform Rational B-Splines). The reason behind this recently developed technique is to enhance accuracy by allowing FEM simulations directly on CAD models. Applications are especially important in areas where higher-order smoothness is required, such as shell theory, cohesive-zone models in failure mechanics, and free-boundary problems. The course is relevant for PhD-students within numerical analysis that would like to pursue research within the FEM or would like to broaden their competence and to students in other areas who would like to use the FEM in their research.